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Towards Adaptive
Hidden Markov Model Beamformers

John McDonough, Dominik Raub, Matthias Wölfel and Alex Waibel

Abstract— Recent interest within the automatic speech recogni-
tion community has focused on the recognition of “meeting room”
speech. In this scenario, the microphone is located in the medium
field, rather than being mounted on a headset and positioned
next to the speaker’s mouth. Hence, this is a natural application
for arrays of microphones and beamforming techniques. Recent
research has indicated that a maximum likelihood (ML) criterion,
evaluated with respect to a hidden Markov model, can be used
to estimate optimal filter coefficients for a filter-and-sum beam-
former. Indeed, this approach has shown significant reductions
in word error rate with respect to a standard delay-and-sum
beamformer. Because acoustic conditions—e.g., speaker locations,
noise levels, reverberation characteristics—change constantly in
a meeting room environment, a beamformer must continuously
adapt to provide optimal performance. This work is an investi-
gation into adaptive beamforming algorithms based on the ML
criterion. In particular, we show how a recursive version of the
well-known expectation maximization algorithm can be used to
set the sensor weights of a subband domain generalized sidelobe
cancelling beamformer. We derive two re-estimation algorithms:
The first is a simple probabilistic gradient descent procedure.
The second is an instance of an extended Kalman filter.

Index Terms— microphone arrays, beamforming, Kalman fil-
ters, speech recognition

I. I NTRODUCTION

I NTEREST within the automatic speech recognition (ASR)
research community has recently focused on the recog-

nition of “meeting room” speech. In this scenario, the mi-
crophone is located in the medium field, rather than being
mounted on a headset and positioned next to the speaker’s
mouth. Hence, this is a natural application for arrays of
microphones and beamforming techniques. For two principal
reasons, however, conventional beamforming techniques are
not well-suited to this application: Firstly, conventional array
processing algorithms are based on the assumption that the
desired signal (i.e., a user’s speech) is uncorrelated with
any noise or interference that is also present in the environ-
ment. For ASR applications, this assumption is unjustified,
as the most important source of signal distortion is room
reverberation, which consists of multiple delayed versions of
the original signal, and hence is highly correlated with it.
Secondly, conventional array processing algorithms typically
maximize a quadratic criterion such as signal-to-noise ratio
(SNR), while simultaneously satisfying a constraint that any
signal from a desired direction pass undistorted through the
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system. Experience has shown, however, that quadratic criteria
such as SNR are only weakly correlated with the recognition
accuracy of an ASR system; improvements in SNR often do
not translate into reductions in word error rate (WER).

Recent work by Seltzer [1] has provided further evidence
that the conventional beamforming algorithms mentioned
above are not optimal for ASR. In the ASR field, the most im-
portant maximization criterion for a wide variety of parameter
estimation tasks is the maximum likelihood (ML) criterion.
Modern speech recognizers are based on the hidden Markov
model (HMM). Seltzer’s findings indicate that an ML criterion,
evaluated with respect to an HMM such as is typically used
for ASR, can be used to estimate optimal filter coefficients
for a filter-and-sum beamformer [1]. Indeed, this approach
has shown significant reductions in WER with respect to a
conventional delay-and-sum beamformer.

Because acoustic conditions—e.g., speaker locations, noise
levels, reverberation characteristics—change constantly in a
meeting room environment, a beamformer must continuously
adapt to provide optimal performance. In this work, we
present a number of adaptive beamforming algorithms based
on ML optimization criteria, where, following Seltzer [1], the
likelihood is evaluated with respect to a HMM. In particular,
we will show how a recursive version of the well-known
expectation maximization (EM) algorithm can be used to set
the sensor weights of a frequency domain generalized sidelobe
cancelling beamformer. The approaches we propose as well as
the organization of the balance of this work can be described
as follows.

Typically, ML estimation for a HMM is done with the EM
algorithm. The conventional EM algorithm is unsuitable for
our application, however, because it updates the parameter
values only after cycling throughall available training data,
which we refer to as theunbounded delayproblem. Moreover,
the EM algorithm requires that all training data from the
distant past be retained, which we refer to as thegrowing
data problem. In Section II-B, we show how the unbounded
delay problem can be avoided through recourse to therecur-
siveexpectation-maximization (REM) algorithm. In the REM
algorithm, the parameters of interest are updated as soon as a
new sample arrives. Section II also develops the form of the
EM auxiliary function to be used in the remaining sections.

In Section III-A, we review the definition of thecepstral
sequence, which is used as an input feature in most modern
ASR systems. In Section III-B we introduce the assumption
that the cepstral features are derived from the subband domain
output of a generalized sidelobe cancelling (GSC) beamformer.
Section III-C then uses the preceding development to derive
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both a ML beamformer based on conjugate gradient optimiza-
tion as originally proposed by Seltzer [1], as well as a simple
least mean square (LMS) error-style algorithm. The LMS
algorithm so obtained is remarkably similar to the conventional
LMS algorithm.

Taking the GSC beamformer and definition of cepstral
sequences from Section III-A as a starting point, we show
in Section IV-A how the maximum likelihood HMM beam-
former can be posed as anonlinear least squares estimation
problem, where the nonlinearity is due to thelog | − |2 factor
appearing in the definition of cepstral sequences. We then
linearize the estimator about the current operating point, and
derive recursive update formulae very similar to those used
in conventional recursive least squares (RLS) estimation. This
approach effectively solves the growing data problem.

In Section IV-B we discuss the steps necessary to cast
the linearized RLS beamforming algorithm developed in Sec-
tion IV-A as an iterated extended RLS beamformer. This
approach offers significant advantages in terms of speed of
convergence.

Although the HMM beamformer derived in this work op-
erates in the subband domain, the sensor weights for each
subbandcannot be estimated separately, as in conventional
beamformers. This is a product of the nonlinearity mentioned
above. In Section IV-C, we discuss possibilities for treating
the subbands independently, and thereby obtaining the numer-
ous ensuing advantages. Section IV-D briefly discusses the
advantages inherent in a square-root implementation [2,§11]
of the iterated extended RLS estimator derived previously. In
conventional beamforming, it is often useful to apply diagonal
loading to the observation correlation matrix in order to limit
the size of the active weight vector, as this improves the
final sidelobe structure and reduces the sensitivity of the
beamformer to steering errors [3,§6.6]. Section IV-D also
describes how diagonal loading can be added to the iterated
extended RLS beamformer considered here.

Section V presents the results of several large vocabulary
conversational speech recognition experiments that were con-
ducted to test the effectiveness of the algorithms proposed in
this work.

In the final section, we summarize the results of this work,
and thereafter discuss our conclusions and plans for future
work.

II. M AXIMUM L IKELIHOOD ESTIMATION

As mentioned in the introduction, the preferred criterion
for parameter estimation in most ASR applications is the ML
criterion. In this section, we provide a brief introduction to the
EM algorithm, which is invariably used whenever performing
ML estimation in conjunction with a HMM. Thereafter we
introduce the REM algorithm, which is perhaps not so well-
known but will prove vital for the development in subsequent
sections. We will then briefly discuss the specialization of both
algorithms for use with a HMM.

A. The Expectation Maximization (EM) Algorithm

To begin, let us define anobservationy drawn from a set
of training dataY. Although y is what we actually observe,

it is useful to think ofy as being “incomplete,” inasmuch as
it does not contain certain useful information. Letx be the
complete observationassociated withy. In addition to all the
information iny, x also contains this missing information, the
so-calledhidden variables.

Suppose thatf(y; Λ) is a probability density function (pdf)
on y specified by some set of parametersΛ. We desire to
obtain a ML estimate ofΛ given the training setY = {yt},
such that

Λ̂ = arg max
Λ

log f(Y; Λ)

Assuming that all observationsyi are independent and iden-
tically distributed (iid), we can equivalently write

Λ̂ = arg max
Λ

∑
t

log f(yt; Λ)

The EM algorithm as originally proposed by Dempster,
Laird, and Rubin [4] proceeds in two steps. In the E- orex-
pectation-step, we evaluate theauxiliary functionQ(Λ,Λ(i)),
given by

Q(Λ,Λ(i)) =
∑

t

E
{

log f(xt,Λ)|yt; Λ
(i)

}
whereΛ(i) is the current parameter estimate; i.e., the estimate
after i iterations. Note that the expectation above is over the
complete observationxt, and is evaluated with pdf parameters
Λ(i). In the M-ormaximization-step, we update the parameter
estimate according to

Λ(i+1) = arg max
Λ

Q(Λ,Λ(i))

Provided the parameter estimates have not yet converged, the
algorithm then continues with another E-step.

The proof that the EM algorithm converges is based on the
inequality

Q(Λ,Λ(i))−Q(Λ(i),Λ(i)) < log f(Y; Λ)− log f(Y; Λ(i))
(II.1)

from which it follows [5, §9.2]

Q(Λ,Λ(i)) > Q(Λ(i),Λ(i)) ⇒ f(Y; Λ) > f(Y; Λ(i))

B. The Recursive Expectation Maximization (REM) Algorithm
We now present a recursive version of the EM algorithm

originally proposed by Titterington [6], and further refined by
Frenkel and Feder [7]. As before, the algorithm consists of
two steps. In the E-step, the auxiliary function

Q(Λ|Λ(t)) = L(t+1)(Λ)

=

t+1∑
i=1

λt+1−i · E
{

log f(xi; Λ)|yi; Λ
(i−1)

}
(II.2)

= λL(t)(Λ) + E
{

log f(xt+1; Λ)|yt+1; Λ
(t)

}
(II.3)

is evaluated, whereλ ∈ (0, 1] is the so-calledforgetting factor.
The statistical expectation over each complete observation
xt+1 is evaluatedonce using the parameter valuesΛ(t) that
are current whenxt+1 arrives. The M-step is then the same
as for the regular EM algorithm,

Λ(t+1) = arg max
Λ

Q(Λ,Λ(t)) (II.4)
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Note that, in keeping with the recursive nature of the algo-
rithm, each parameter estimate in (II.4) is associated with a
time t.

C. EM Algorithm for the Hidden Markov Model

Consider a directed graph representing an HMM comprised
of a set{ni} of nodesand a set{ej|i} of edges, whereni is
the i-th node andej|i is the directed edge fromni to nj . Let
us define thetransition probability

pj|i = P (nj |ni) = P (ej|i|ni) (II.5)

Let gik denote thek-th Gaussian component associated with
nodeni and define themixture weight

qk|i = P (gik|ni)

The conditional likelihood assigned to a single observationy
by the Gaussian mixture model associated with nodeni can
be expressed as

P (y; Λi) =
∑

k

qk|i P (y; Λik)

whereΛi = {(qk|i,Λik)}. HereΛik = (µik,Qik) andµik and
Qik respectively denote the mean vector and covariance ma-
trix. The likelihood returned by thek-th Gaussian component
is

P (y; Λik) =
1√

|2πQik|
exp

[
− 1

2 (y − µik)T Q−1
ik (y − µik)

]
Finally, letyT

1 denote thesequenceof observations associated
with a given utterance and letyt

1 for some1 ≤ t ≤ T denote
a subsequence ofyT

1 .
Let us define theforward probability [8, §12.2] α(yt

1, i)
as the likelihood of generating the observation subsequence
yt

1 and arriving at stateni at time t given the current model
parametersΛ:

α(yt
1, i) = P (nt = ni,yt

1; Λ) (II.6)

where—in a slight abuse of notation—we have usednt to de-
note the HMM state associated with observationyt. Similarly,
the backward probabilityis the likelihood of generating the
observation subsequenceyT

t+1 conditioned on having started
from statenj at time t:

β(yT
t+1|j) = P (yT

t+1|nt = nj ; Λ) (II.7)

These probabilities can be calculated via the well-known
recursions [8,§12]:

α(yt+1
1 , j) = P (yt+1; Λj)

∑
i

α(yt
1, i) pj|i (II.8)

β(yT
t+1|j) =

∑
i

β(yT
t+2|i) pi|j P (yt+1; Λi) (II.9)

Our interest in the forward-backward probabilities is due
to the fact that they can be used to calculate the posterior
probabilities

cjk,t = P (gt = gjk|yT
1 ; Λ) (II.10)

=
α(yt

1, j)β(yT
t+1|j)

P (yT
1 ; Λ)

qk|j P (yt; Λjk)∑
m qm|j P (yt; Λjm)

(II.11)

During conventional HMM training, these posterior probabili-
ties are necessary for mean and variance re-estimation, which
is achieved by maximizing the auxiliary function

K(Λ|Λ0) = − 1
2

∑
j,k,t

cjk,t

[
log |2πQjk|

+ (yt − µjk)T Q−1
jk (yt − µjk)

]
(II.12)

As we will find in Section III,K(Λ|Λ0) can also be optimized
with respect to the frequency-dependent sensor weights to
perform ML beamforming.

Applying the REM algorithm to the HMM is somewhat
more involved, inasmuch as eachcjk,t depends on all observa-
tions yT

1 in a given utterance. Although it would be straight-
forward to update all parameters at the end of a complete
utterance, updating more often than that, such as at the end of
every word, would require an approximation of (II.8–II.9). For
example, we might make aViterbi approximation[8, §12.2] at
the end states of words, and sum only along the most likely
path.

III. M AXIMUM L IKELIHOOD BEAMFORMING

Having completed our brief discussion of the EM and REM
algorithms, we now take up the task of using this algorithm to
perform ML beamforming. In so doing, we will introduce the
concepts of cepstral sequences and the generalized sidelobe
cancelling beamformer.

A. Cepstral Sequences

Let v = {vn} denote a vector of cepstral coefficients
associated with a vectorV = {Vm} of frequency samples,
so that

vn =
1

2M

M−1∑
m=0

log |Vm|2 cos ωmn (III.1)

whereωm = m/2πM . Defining thecosine transform matrix
S = {Snm} whose components are given by

Snm =
1

2M
cos

nm

2πM

for all n, m = 0, 1, . . . ,M − 1, we can rewrite (III.1) as

vn =
M−1∑
m=0

Snm log |Vm|2

If the features are to be used for ASR, a nonlinearMel-
warping is typically applied to the frequency axis prior to
the calculation of cepstral coefficients. In this case, we must
replace the last equation with

vn ,
M−1∑
m=0

Snm log |Ṽm|2 (III.2)

where
|Ṽm|2 ,

∑
l

Mml|Vl|2 (III.3)

are the Mel-warped frequency or subband components and
M = {Mml} is the Mel-warping matrix.
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B. Generalized Sidelobe Cancelling Beamformers

Now consider thegeneralized sidelobe cancelling(GSC)
beamformer [3,§6.7.3], whose final output is obtained from
the difference of the outputs of upper and lower branches. On
the upper branch, the inputUm is multiplied by thequiescent
weight vectorwq,m, which is chosen to ensure the beamformer
satisfies adistortionless constraint. The latter can be expressed
as

wH
q,m gm = 1 (III.4)

wheregm is thearray manifold vector[3, §2.2], given by

gm =
[
e−jωmτ0 e−jωmτ1 · · · e−jωmτN−1

]T

In the above,N is the number of sensors in the array,τn is the
propagation delay between the source and then-th sensor, and
ωm is the center frequency of them-th subband. On the lower
branch, the input is first multiplied by theblocking matrixBm,
which must be orthogonal towq,m, such that

wH
q,mBm = 0

Thereafter, the output of the blocking matrix,

Zm = BmUm (III.5)

is multiplied by theactive weight vectorwa,m. The orthog-
onality of wq,m andBm ensures that the total weight vector
wm = wq,m + Bmwa,m satsfieswH

mBm = 1 regardless of
the value assigned towa,m. In what follows, we will choose
ŵa,m according to the ML criterion, where the likelihood is
calculated with respect to an HMM.

AssumingV is the output of the GSC, we may write

Vm =
(
wH

q,m −wH
a,mBH

m

)
Um (III.6)

Setting wa,m = 0 for all m we obtain thedelay and sum
beamformer, which is the baseline against which any adap-
tive beamforming algorithm must be judged. Equation (III.6)
implies

|Vm|2 = (wH
q,m −wH

a,mBH
m)UmUH

m(wq,m −Bmwa,m) (III.7)

Equations (III.2) and (III.7) can be used to develop an
expression for the gradient ofvn with respect to each of the
wa,m. Taking a partial derivative on both sides of (III.2) gives

∂vn

∂w∗
a,m

=
M−1∑
l=0

SnlMlm

|Ṽl|2
· ∂ |Vm|2

∂w∗
a,m

(III.8)

where {|Ṽm|2}m are the Mel-warped subband compo-
nents (III.3). If we define

ρnm(t) ,
M−1∑
l=0

SnlMlm

|Ṽl|2
(III.9)

then (III.8) can be rewritten as

∂vn

∂w∗
a,m

= ρnm(t)
∂ |Vm|2

∂w∗
a,m

(III.10)

We can take the desired derivative on both sides of (III.7)
to obtain

∂ |Vm|2

∂w∗
a,m

= BH
mUmUH

m (Bmwa,m −wq,m) (III.11)

Substituting (III.11) into (III.10), we arrive at

∂vn

∂w∗
a,m

= ρnm(t) ·BH
mUmUH

m (Bmwa,m −wq,m) (III.12)

C. Two Simple Beamforming Algorithms

Our intention is to choose the active sensor weights{wa,m}
so as to maximize the likelihood of the training set{v(t)}t.
Hence, we setΛ = {wa,m}, and, in light of (II.12), seek to
minimize the objective function

K(Λ|Λ(i−1)) = 1
2

∑
t

[v(t)− µ(t)]T Q−1(t) [v(t)− µ(t)]

(III.13)
where Λ(i−1) is the parameter estimate from theprevious
iteration. To reduce computation, we have assumedcjk,t ≡ 1
and let µ(t) = µjk and Q(t) = Qjk denote the mean
and variance associated withv(t) = vt. This corresponds
to the case wherein the sum is made only over the Viterbi
path [8,§12.2], and there is a single Gaussian per HMM state.
Based on (III.12–III.13) it is straightforward to develop a ML
beamforming algorithm that uses a single,global utterance for
enrollment, as proposed by Seltzer [1]. It is also straightfor-
ward to develop a simple LMS-style adaptive beamforming
algorithm, wherein an instantaneous estimate of the gradient
of the error surface is made, and then a small step is taken in
the putative downhill direction.

Let K(t)(Λ|Λ(i−1)) denote the contribution of the subband
snapshot at timet to (III.13), so that

K(t)(Λ|Λ(i−1)) = 1
2 [v(t)− µ(t)]T Q−1(t) [v(t)− µ(t)]

The partial derivative ofK(t)(Λ|Λ(i−1)) with respect tow∗
a,m

can be readily evaluated via the chain rule as

∂K(t)(Λ|Λ(i−1))
∂w∗

a,m

= −νm(t) · Zm(t) e∗m(t) (III.14)

whereZm(t) is the output of the blocking matrix (III.5) and

em(t) ,
[
wH

q,m − ŵH
a,m(i− 1)BH

m

]
Um(t) (III.15)

is the output of the beamformer for the snapshotUm(t) using
the old sensor weightŝwa,m(i − 1). In writing (III.14) we
have also defined

νm(t) ,
L−1∑
n=0

vn(t)− µn(t)
φn(t)

· ρnm(t) (III.16)

Using (III.14), we can readily calculate the gradient for an
entire enrollment utterance as

K(Λ|Λ(i−1)) =
∑

t

∂K(t)(Λ|Λ(i−1))
∂w∗

a,m

This gradient together with the actual value ofK(Λ|Λ(i−1))
can be used to implement an optimization algorithm based on
the method of conjugate gradients [9,§10.6]. Such a “global”
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optimization procedure was proposed by Seltzer [1] for the
beamforming application considered here.

Because a single utterance can last as long as a few dozen
seconds, during which time the speaker may move, turn on
a laptop, open a window, etc., it would be better to update
the sensor weights after everyframe instead of waiting until
the end of an utterance. An adaptive beamformer which does
exactly this can be obtained by considering the LMS update
rule:

ŵa,m(t) = ŵa,m(t− 1)− ξm(t) · ∂K(t)(Λ|Λ(t−1))
∂w∗

a,m

which, upon substituting (III.14), can be rewritten as

ŵa,m(t) = ŵa,m(t−1)+ξm(t) ·νm(t)Zm(t) e∗m(t) (III.17)

It is remarkable that (III.15–III.17) differ from the conven-
tional LMS update rule for a GSC beamformer [3,§7.7.1.4]
only by the factorνm(t). To set the step sizeξm(t), Van
Trees [3,§7.7.2.2] recommends the heuristic

ξm(t) =
γ

σ2
m(t)

where

σ2
m(t) = βσ2

m(t− 1) + (1− β)UH
m(t)Um(t)

is the average power in them-th subband. In the above,γ is a
constant with a typical value of0.005 < γ < 0.05. Similarly,
β is a constant close to unity; i.e.,β ≥ 0.99. We can also use
a simple technique based on that in Van Trees [3,§7.7.4] for
enforcing the quadratic constraint

‖ŵa,m(t)‖2 ≤ α2

for some realα > 0, which is beneficial in the presence of
steering errors and other forms of mismatch [3,§6.6]. The
algorithm first calculates

w̃a,m(t) = ŵa,m(t− 1) + ξm(t) · νm(t)Zm(t) e∗m(t)

exactly as in (III.17). Thereafter, the final weight vector is
obtained from

ŵa,m(t) =

{
w̃a,m(t), if ‖w̃a,m(t)‖2 ≤ α2

cm(t)w̃a,m(t) otherwise
(III.18)

where, for a conventional LMS beamformer,

cm(t) =
α

‖w̃a,m(t)‖
(III.19)

In HMM beamforming, the sensor weights in each frequency
bin cannot be optimized independently; hence, we found it
beneficial to define a single scale factorcm(t) = c(t) for all
m according to

c(t) =
α

max
m

‖w̃a,m(t)‖
(III.20)

IV. RECURSIVELEAST SQUARESESTIMATION

Here we provide the development necessary to cast the
HMM beamformer as a recursive least squares estimation
procedure.

A. Linearized Recursive Least Squares Estimation

As mentioned previously, our beamforming application in-
volves a nonlinearity due to thelog | − |2 in the definition
of cepstral sequences. The approach taken in this Section is
to simply linearize this term about the current estimate of
the sensor weights. Applying the matrix inversion lemma, we
can then formulate alinearizedrecursive least squares (RLS)
estimation algorithm.

Let N denote the number of sensors in the array, letM
denote the number of frequency bands in the subband filter
bank, and letL denote the length of the final cepstral sequence.
Given the lengthN − 1 vectorwa,m of active sensor weights
corresponding to them-th subband defined previously, let us
now define thestackedactive weight vector as

Wa ,
[
wa,0 wa,1 · · · wa,M−1

]T

As before, letUm(t) denote the array input at timet for the
m-th subband, and define the matrixU(t) of stacked inputs as

U(t) , diag
[
U0(t) U1(t) U2(t) · · · UM−1(t)

]
Also define the stacked blocking matrixB as

B , diag
[
B0 B1 B2 · · · BM−1

]
As in Section III-C, we seek to minimize the auxiliary

function

K(Λ|Λ0) = 1
2

∑
t

[v(t, Wa) − µ(t)]T Q−1(t) [v(t, Wa) − µ(t)]

(IV.1)
where we have explicitly shown the dependence ofv(t) =

v(t, Wa) on Wa. It is then apparent that (IV.1) has the form of
a nonlinearleast squares estimation problem. As in (II.2–II.3),
define theexponentially-weighted squared erroras

ε(t;Wa) =

t∑
i=1

λt−i [v(i, Wa) − µ(i)]H Q−1(i) [v(i, Wa) − µ(i)]

(IV.2)
whereλ is once more the forgetting factor. Next we seek to

linearize this RLS estimator about the current estimateŴa(t)
of the weight vector. From (III.12) and (III.15) it follows [10,
§4] [

∂vn

∂w∗
a,m

]H

= CRLS,nm(t)ZH
m(t)

where

CRLS,nm(t) = −ρnm(t) · em(t) (IV.3)

It is then apparent thatv(t;Wa) can be approximated with the
first order Taylor series,

v(t;Wa) ≈ v(t; Ŵa(t − 1)) + CRLS(t)Z
H(t)

[
Wa − Ŵa(t − 1)

]
(IV.4)

where

CRLS(t) = {CRLS,nm(t)}nm (IV.5)

and

Z(t) = diag
[
Z0(t) Z1(t) Z2(t) · · · ZM−1(t)

]
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is the matrix of stacked blocking matrix outputs. We now apply
this approximation to (IV.2), to obtain

ε(t;Wa) =
t∑

i=1

λt−i
[
CRLS(t)ZH(t)Wa − µ̄(i)

]H

Q−1(i)

·
[
CRLS(t)ZH(t)Wa − µ̄(i)

]
(IV.6)

where

µ̄(t) = µ(t) −
[
v(t; Ŵa(t − 1)) − CRLS(t)Z

H(t)Ŵa(t − 1)
]

(IV.7)
Through straightforward algebraic manipulations, (IV.6) can

be expressed as

ε(t;Wa) = ε0(t)−WH
a ζ(t)−ζH(t)Wa+WH

a Φ(t)Wa (IV.8)

where

Φ(t) =

t∑
i=1

λt−iZ(i)CH
RLS(i)Q

−1(i)CRLS(i)Z
H(i)

= λΦ(t − 1) + Z(t)CH
RLS(t)Q

−1(t)CRLS(t)Z
H(t) (IV.9)

ζ(t) =

t∑
i=1

λt−iZ(i)CH
RLS(i)Q

−1(i)µ̄(i)

= λζ(t − 1) + Z(t)CH
RLS(t)Q

−1(t)µ̄(t) (IV.10)

ε0(t) =

t∑
i=1

λt−iµ̄T (i)Q−1(i)µ̄(i)

= λε0(t − 1) + µ̄T (t)Q−1(t)µ̄(t)

Differentiating (IV.8) and equating the result to zero, we
obtain thenormal equations,

Φ(t)Wa = ζ(t)

which, assumingΦ(t) is invertible, are readily solved as

Ŵa(t) = Φ−1(t)ζ(t) (IV.11)

Applying the matrix inversion lemma[2, §9.2] to (IV.9)
provides

Φ−1(t) = λ−1Φ−1(t − 1) − λ−2Φ−1(t − 1)Z(t)CH
RLS(t)

·
[
Q(t) + λ−1CRLS(t)Z

H(t)Φ−1(t − 1)Z(t)CH
RLS(t)

]−1

· CRLS(t)Z
H(t)Φ−1(t − 1) (IV.12)

Defining the precision matrix P(t) = Φ−1(t) we can
rewrite (IV.12) as

P(t) = λ−1P(t − 1) − λ−1GRLS(t)CRLS(t)Z
H(t)P(t − 1) (IV.13)

where

GRLS(t) = λ−1P(t − 1)Z(t)CH
RLS(t)

·
[
Q(t) + λ−1CRLS(t)Z

H(t)P(t − 1)Z(t)CH
RLS(t)

]−1

(IV.14)

is theKalman gainfor this RLS problem. It is then straight-
forward to show that the desired update formulae for the active
sensor weights is

Ŵa(t) = Ŵa(t− 1) + GRLS(t)ξ(t) (IV.15)

where
ξ(t) = µ(t)− v(t; Ŵa(t− 1)) (IV.16)

is thea priori estimation error.

B. Extended Recursive Least Squares Estimation

In RLS estimation, we calculate an estimate of a set of
deterministicparameters so as to minimize a squared error
criterion. In Kalman filtering, on the other hand, we estimate
the current state of a stochastic process, which is itself
assumed to be arandomvector. Although the two estimators
are formulated differently, the quantities estimated by each can
be put in a one-to-one correspondence, as originally proposed
in [11], and discussed in [2,§10.8]. This correspondence
follows upon associating the parameters of interest in the
RLS estimation problem with the state of the Kalman filter,
whereupon the precision matrixP(t) for the RLS estimator can
be equated to the covariance matrix of thestate estimation
error for the Kalman filter. Indeed, this correspondence is
extremely useful, as it implies that by formulating a given
RLS estimation problem as a problem in Kalman filtering, we
can draw upon the vast literature on Kalman filtering published
since Kalman’s original paper [12] to improve the numerical
robustness, rate of convergence, tracking capabilities and other
characteristics of the estimator so obtained. In [10], this
correspondence is developed in great detail for the HMM
beamforming problem treated here. For reasons of brevity, we
can only summarize the key points presented in that earlier
work. The desired estimator can be derived with the following
steps:
1. Cast the linearized RLS estimator developed in Section IV-

A as an extended Kalman filter (EKF), wherein the non-
linear observation equation is linearized about each new
estimate of the sensor weights. This development is very
similar to that in [2,§10.8].

2. Refine the EKF as aniterated extendedKalman filter
(IEKF) [13, §8.3]. In the IEKF, severallocal iterations
are made for each observation, wherein the observation
equation is relinearized about the new state estimate.
Thereby the IEKF provides faster convergence than the
EKF, especially when the initial parameter estimate is far
from the optimum.

3. Recast the IEKF as an iterated extended recursive least
squares (IERLS) estimator. This is necessary for any prac-
tical implementation inasmuch as the state vector of the
Kalman filters obtained in Steps 1 and 2 grows exponen-
tially with time [2, §10.8].

4. The inverse of the state error covariance matrixP(t) is
known as theFisher information matrix[14, §3.4]. In the
final step, the IERLS estimator is converted toinforma-
tion form; see Haykin [2,§10.9]. As will be discussed
in Section IV-D, the information form of the estimator
enables the diagonal loading of the resulting estimator to
be periodically refreshed.
The steps above, as well as the final form of the IERLS

estimator are summarized in [10,§6.3].

C. Independent Processing of Subbands

One of the great advantages of conventional subband do-
main beamformers of either the LMS or RLS variety is that
the sensor weights for the individual subbands can be set
independently. This is a direct consequence of the statistical
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Input paired vector process:(µ(1), U(1)), . . . , (µ(t), U(t))
Known parameters:

• stacked blocking matrix:B
• cepstral sequence obtained from GSC beamformer:v(t, Ŵa(t− 1))
• observation error covariance matrix:Q(t)
• initial diagonal loading:σ2

0

Initial conditions:
Ŵa(0) = 0; P−1(0) = σ2

0I

Computation:t = 1, 2, 3, . . .

ϕ1 = Ŵa(t− 1)

Iterate: i = 1, 2, 3, . . . , f − 1

µ̄(t; λ−1/2ϕi) = µ(t)−
[
v(t; λ−1/2ϕi)−

M−1∑
m=0

cm(t; λ−1/2ϕi,m)ZH
m(t)ϕi,m

]

Iterate: m = 0, 1, . . . , M − 1

P−1
m (t) = λP−1

m (t− 1) + Zm(t)cH
m(t; λ−1/2ϕi,m)Q−1(t)cm(t; λ−1/2ϕi,m)ZH

m(t) (IV.17)

P−1
m (t)ϕi+1,m = λP−1

m (t− 1)ŵa,m(t− 1) + Zm(t)cH
m(t; λ−1/2ϕi,m)Q−1(t)µ̄(t; λ−1/2ϕi) (IV.18)

ϕi+1,m = Pm(t)
[
P−1

m (t)ϕi+1,m

]
(IV.19)

Set:

Ŵa(t) = ϕf (IV.20)

Notes:

1. The local iteration overi continues until there is no significant difference betweenϕi andϕi+1.
2. cm(t; λ−1/2ϕi,m) is m-th column of the matrixCRLS(t) defined in (IV.3) and (IV.5) whereWa = λ−1/2ϕi,m.

TABLE I

INFORMATION VERSION OF THE ITERATED EXTENDEDRLS ESTIMATOR WITH UNCORRELATED SUBBAND STATE ESTIMATION ERRORS.

independence of the subbands [3,§5.2]. Treating each subband
independently results in a tremendous savings in computation
for the RLS variety beamformers, and much faster rate of
convergence for LMS beamformers. In order to rewrite the
recursions pertaining to the information version of the RLS
estimator based on the assumption of uncorrelated subband
state estimation errors, we assumeP−1(t) is block diagonal,
such that

P−1(t) = diag
[
P−1

0 (t) P−1
1 (t) · · · P−1

M−1(t)
]

(IV.21)

and then define

ϕi =
[
ϕT

i,0 ϕT
i,1 ϕT

i,2 · · · ϕT
i,M−1

]T

The recursions defining the information version of the iterated
extended RLS estimator can then be written as in Table I;
see [10,§7.1].

D. Adding Diagonal Loading

Equations (IV.17–IV.18) can be solved forP−1
m (t) and

P−1
m (t)ϕi+1,m, whereupon the updated sensor weights follow

from (IV.19). But the calculation ofP(t) requires anO(N3)
inversion ofP−1(t). This expensive operation can be avoided
by propagating the Cholesky decomposition [15,§4.2] or
square-rootP−H/2

m (t) of P−1(t) instead ofP−1(t) itself,
which implies the sensor weightsϕi+1,m can be obtained
through a simple forward substitution. This approach also

offers advantages with regard to numerical robustness. The
details of the square-root implementation [2,§11] for the
iterated extended RLS estimator considered here can be found
in [10, §7.2].

In conventional beamforming,diagonal loadingis usually
added toΦm(t) = P−1

m (t) in order to restrict the size of
ŵH

a,m(t) = ϕH
f,m. This is done to control the sidelobe structure

and reduce the sensitivity of the beamformer to steering
errors [3,§6.6]. AlthoughΦm(t) is typically initialized as a
diagonal matrix, this initial loading quickly decays whenever
λ < 1. One advantage of the information version of the
RLS estimator is that the diagonal loading can be periodically
refreshed in the following fashion. Letei denote thei-th unit
vector. Suppose we would like to add the loadingβ2

m(t) to
the i-th diagonal component ofΦm(t) according to

ΦL,m(t) = Φm(t) + β2
m(t) ei eT

i (IV.22)

This can be accomplished by forming the prearray

A =
[
P−H/2

m (t)
... βm(t)ei

]
and then constructing a unitary transformationθi that
achieves [16]

Aθi =
[
P−H/2

L,m (t)
... 0

]
where P−H/2

L,m (t) is the desired Cholesky decomposition
of (IV.22).
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The application of eachθi requires O(N2) opera-
tions; hence, diagonally loading all diagonal components of
P−H/2

m (t) is an O(N3) procedure. Note, however, that the
diagonal loading need not be maintained at an exact level,
but only within a broad range. Thus, with each iteration of
RLS estimation, the diagonal components ofP−1/2

m (t) can
be successively loaded, so that the entire process remains
O(N2).

V. SPEECHRECOGNITION EXPERIMENTS

The speech experiments described below were conducted
with the Janus Recognition Toolkit (JRTk), which is devel-
oped and maintained jointly at the Universität Karlsruhe in
Karlsruhe, Germany and at the Carnegie Mellon University in
Pittsburgh, Pennsylvania, USA.

For these experiments, training was conducted on the En-
glish Spontaneous Scheduling Task (ESST) corpus, which
contains approximately 35 hours of speech contributed by
242 speakers. The speech material was collected during
spontaneous dialogs between two speakers engaged in the
planning of overseas business trips. The dialogs were orig-
inally recorded with Sennheiser head-mounted, close-talking
microphones. The clean speech from the original ESST record-
ings was used to train the HMM speech recognizer for all
experiments.

The ESST test set is approximately 3.5 hours in length and
contains 58 dialog halves contributed by 16 unique speakers.
The total test set comprises 22,889 words. For the beamform-
ing experiments described below, the clean speech test data
was played through a loudspeaker into a6 × 8 meter room
with a reverberation time of approximately 350 ms, and then
recorded with a linear microphone array. The array consisted
of eight Sennheiser omnidirectional microphones separated by
4.1 cm. The stationary loudspeaker was located 2 m in front
of one end of the array. In addition to the source speech data,
interference data was also recorded by moving the speaker
parallel to the array approximately 3 m from the location used
for the source. Two types of interference were recorded: music
from a chamber orchestra and speech from another talker.

All speech data was digitally sampled at a rate of 16 kHz.
The speech features used for all experiments were obtained by
estimating 13 cepstral components, along with their first and
second differences. Features were calculated every 10 ms using
a 20 ms sliding window. In extracting the cepstral features, a
Hamming window 320 samples in length was first applied
to each segment of speech. The windowed segment was then
padded with zeros and a 512 point FFT was calculated. For
the single-channel experiments, the frequency samples were
then used to calculate cepstral coefficients as in (III.2–III.3).
For the various beamforming scenarios, the frequency samples
from each sensor in the array were combined as in (III.6) and
thereafter the cepstral coefficients were calculated.

All experiments with HMM beamforming algorithms were
conducted withoracle state alignments, which were obtained
by performing a Viterbi state alignment with the correct
transcription on the output of the delay and sum (D&S)
beamformer. All sensor weight optimization was performed
in the cepstral domain as described in Sections III and IV.

Interference
Beamformer None Music Talking

Single-Channel 61.37 65.94 64.36
D&S 51.34 59.95 59.39
GSC 54.72 58.24 56.17

Unconstrained 51.08 58.51 57.88

TABLE II

WORD ERROR RATES FOR GLOBAL(I .E., SINGLE UTTERANCE) ML

BEAMFORMING EXPERIMENTS.

Interference
α2 None Music Talking

D&S 51.34 59.95 59.39
10−4 51.31 59.84 59.39
10−3 51.32 59.70 59.25
10−2 51.17 59.54 58.94
10−1 51.27 59.41 58.76
100 51.28 59.42 58.68

TABLE III

WORD ERROR RATES FORHMM-LMS BEAMFORMING EXPERIMENTS.

An unadapted HMM with 48 Gaussians for each of 2,340
codebooks was used for all speech recognition experiments.
Using this model to recongize the original clean speech test
set, a word error rate (WER) of 31.94% was achieved. For the
HMM beamforming experiments, an auxiliary model was used
for sensor weight optimization, which had a single Gaussian
component per codebook. Only static cepstral features were
used for sensor weight estimation.

A. Experimental Results

The results of theglobal optimization experiments, wherein
the longest utterance for each speaker was selected, and
mutiple iterations of conjugate gradient descent were run on
this one utterance to find the ML sensor weights, are shown in
Table II. As is clear from the table, the global sensor weight
optimization provided only a marginal gains in the experiments
without interference. For the cases with music and talking
interference, however, the reduction in WER with respect to
the D&S baseline was substantial.

The results of the experiments with the HMM-LMS beam-
former are given in Table III. The left column indicates the
value assigned the boundα2 on the size of the active weight
vector; see (III.18) and (III.20). As is clear from the table,
no improvement in recognition performance was observed for
the no interference case. For the music and talking interference
cases, there is a statistically significant reduction in WER, but
the gains arenot so large as those obtained with the global
optimization scheme.

The results of the experiments with the HMM-RLS beam-
former are given in Table IV. The left column indicates the
amount of diagonal loading applied as in (IV.22) measured
with respect to the average power in all subbands; more load-
ing implies the active weight vector is smaller. To achieve fast
initial convergence, five (5) local iterations with a forgetting
factor of λ = 0.98 were conducted for each of the first 1000
cepstral observation according to the iterated extended RLS
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Interference
Load Level None Music Talking

D&S 51.34 59.95 59.39
-35 51.32 59.79 59.20
-40 51.25 59.35 58.94
-45 52.27 60.38 58.77
-50 58.35 71.24 65.54

TABLE IV

WORD ERROR RATES FOR ITERATED EXTENDEDRLS BEAMFORMING

EXPERIMENTS.

Interference
Load Level (dB) None Music

D&S 51.34 59.95
50 51.31 59.97
45 51.28 60.07
40 51.31 60.21
35 51.46 60.77
30 53.68 63.36

TABLE V

WORD ERROR RATES FOR THE CONVENTIONALRLS BEAMFORMER IN

GSCCONFIGURATION.

algorithm described in Table I. As the sensor weights were
largely stable at that point, one a single local iteration with
λ = 1.0 was performed thereafter. Here again we observe
no gain with the no interference case. For the music and
talking interference cases, there is a statistically significant
reduction in WER for diagonal load levels of -40 and -45 dB
respectively, but the gains arenot so large as those obtained
with the global optimization scheme.

Finally, for the sake of comparison, we tested conventional
RLS and LMS beamformors with the same Hamming window-
FFT filterbank used for the HMM beamforming experiments.
The results of the experiments are given in Tables V and VI
respectively. Frequency dependent scaling factors as in (III.19)
were used in estimating the sensor weights for the con-
ventional LMS beamformer. For both types of conventional
beamformers, the variations in WER are essentially random;
i.e., the conventional algorithms failed to provide a statistically
significant improvement in system performance.

B. Discussion

As noted before, the global optimization procedure provided
only a marginal reduction in WER with respect to D&S in the

Interference
α2 None Music

D&S 51.34 59.95
10−4 51.32 59.92
10−3 51.47 59.82
10−2 51.72 60.37
10−1 54.96 64.90

TABLE VI

WORD ERROR RATES FOR THE CONVENTIONALLMS BEAMFORMER IN

GSCCONFIGURATION.

no interference scenario, but substantial reductions for both
music and talking interference. We attribute this difference
in behavior primarily to the short analysis window of 20 ms
used for these experiments. Such a short window is adequate
for an adaptive beamformer to suppress adirect interference
signal, but is insufficient to remove reverberation, which is the
primary distortion in the absence of any strong interferer. It is
worth noting that Seltzer [1] obtained significant reductions in
WER for speech material that had been artificially “reverber-
ated” by convolution with a room impulse response. This was
achieved, however, by includingdelayedfrequency samples in
the beamforming procedure. As discussed in the next section,
we believe that the same effect can be obtained by using a
better filter bank, with a longer memory.

Based on the global optimization experiments, it seems
that cepstral-domain optimization is very viable. Seltzer [1]
achieved substantial reductions in WER by performing all
parameter optimization in the log-spectral, instead of cep-
stral domain. We also conducted several experiments wherein
sensor weight optimization was performed in the log-spectral
domain. Unfortunately, none of these experiments resulted in
a WER reduction with respect to the D&S beamformer. Our
efforts to resolve this discrepancy are ongoing.

The results in Table II clearly show that the constrained
GSC actually outperforms the fully unconstrained beamformer.
One possible explanation for this observation is the following:
Whenever a random variable or vector transformed, it’s like-
lihood in the transformed space must be multiplied by the
Jacobianof the transformation [17,§6.3] to obtain the true
likelihood. In the present case, a transformation is performed
on the spectral input of each sensor to obtain the final output
of the beamformer. Because the GSC imposes a distortionless
constraint on the look direction, however, the Jacobian for the
look direction is unity. The unconstrained beamformer imposes
no such constraint, but neglects to account for the contribution
of the Jacobian during sensor weight optimization. Hence, the
“likelihood” used by the unconstrained beamformer is not the
actual likelihood of the source features.

As reported in Table IV, we have observed statistically
significant WER reductions with the adaptive RLS-HMM
beamformer, but not so much as with the global optimization
schemes. We hypothesise that the smaller reduction in WER
is a product of the failure of the Hamming window-FFT filter
bank to provide sufficiently independent spectral samples, as
was explicitly assumed in (IV.21); i.e., there is simply too
much overlap between adjacent bins in the frequency domain
due to the spectral smearing of the relatively short analysis
window. The fact that the conventional algorithms provided
no improvement with respect to the D&S beamformer would
seem to support this hypothesis. Further experiments with a
better filter bank, however, are required to verify it. As the
design of perfect reconstruction filter banks is now a well-
established [18] field, there are several well-proven designs
that might potentially be used in the current application.

VI. CONCLUSIONS ANDFUTURE WORK

In this work, we have briefly discussed the meeting room
scenario as the next challenge for the ASR community. Also,
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following [1] we have considered the problem of adaptively
setting the sensor weights of a GSC beamformer under a
ML criterion. In particular, we showed that it was straight-
forward to develop both LMS and RLS adaptive algorithms
for ML beamforming. These algorithms had many of the
same advantages and drawbacks of conventional LMS and
RLS algorithms: Both LMS and RLS algorithms update the
sensor weights each time a new subband snapshot is received,
and both process each snapshot only once, and thereafter
discard it. The LMS algorithm developed here, much like the
conventional LMS algorithm, is characterized by simplicity,
both conceptually and in its implementation. Moreover, it has
a computational complexity ofO(N) whereN is the number
of sensors in the array. Unfortunately, this simplicity is offset
by the potentially slow convergence of the LMS algorithm [3,
§7.7]. The RLS algorithm is more difficult conceptually and
has a computational complexity ofO(N2). But in return for
this higher computational load, the RLS algorithm provides
faster convergence [3,§7.4]. In the speech recognition exper-
iments described in Section V, both LMS and RLS versions
of the HMM beamformer providedly statistically significant
reductions in word error rate with respect to D&S. These
reductions, however, were not so large as those obtained with
global optimization algorithm, wherein multiple iterations of
conjugate gradient descent are performed on a single utterance
until the sensor weights converge.

Although this work has provided a relatively detailed
discussion of the parameter estimation aspects of the ML
beamforming problem, it has neglected one very important
issue: A beamformer operating in a reverberant environment
must operate on blocks of speech on the order of 300-400 ms
in length. As mentioned in the introduction, this follows from
the well-known fact that the primary hindrance to the accurate
recognition of far field speech is reverberation, which tends to
smear the temporal characteristics of the speech signal, and
thereby cause devastating degradations in ASR performance.
In order to effectively compensate for reverberation, each
channel of a filter-and-sum beaformer must have a filter length
comparable to, or preferrably longer than, the reverberation
time of the room in which the ASR system operates. For a
medium-sized meeting room, the reverberation time can easily
be a few hundred milliseconds. An ASR system, on the other
hand, must operate on speech segments on the order of 15-20
ms because, for such relatively short segments, the articulators
and hence the characteristics of the resulting speech arequasi-
stationary, which is not true of longer segments. The problem
outlined above is exactly that which we hope to consider in
future: How can the conflicting signal processing requirements
imposed by the beamforming and recognition components of
a medium field ASR system be effectively resolved? Indeed,
our initial efforts to answer this question can be found in [19].

A well-known limitation of conventional RLS estimators is
the assumption that the parameters to be estimated change
either not at all, or only very slowly. Indeed, Haykin [2,
§14.6] explains that because of this assumption, a conventional
RLS estimator actually hasworse tracking capability than
the simpler LMS estimator, despite its better convergence
performance. As a beamformer operating in a real meeting

room environment must be able to adapt to moving sources and
other changes in the environment, this limitation in tracking is
clearly a drawback. Fortunately, one possible remedy is readily
obtained by exploiting the equivalence of RLS estimators and
Kalman filters mentioned in Section IV-B. Because the RLS
estimator implicity assumes the parameters to be estimated are
deterministic and constant, casting the linearized RLS estima-
tor developed in Section IV-A as a Kalman filter provides a
filter with no process noise. For applications wherein these
parameters change with time, however, it is straightforward to
include process noise in the model. The larger the covariance
of this process noise, the greater the uncertainty in the estimate
of the state parameters. Hence, the covariance of the process
noise can be allowed to vary with time, such that during
intervals wherein the speaker’s position or other environmental
factors change quickly, the state parameters are also allowed to
quickly adapt. Haykin [2,§14.7] discusses several applications
where this approach was used with good effect.
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